..
542. 01 Matrix
Problem Description
Given an m x n binary matrix mat, return the distance of the nearest 0 for each cell.
The distance between two adjacent cells is 1.
Example 1:
Input: mat = [[0,0,0],[0,1,0],[0,0,0]]
Output: [[0,0,0],[0,1,0],[0,0,0]]
Example 2:
Input: mat = [[0,0,0],[0,1,0],[1,1,1]]
Output: [[0,0,0],[0,1,0],[1,2,1]]
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n <= 104
1 <= m * n <= 104
mat[i][j] is either 0 or 1.
There is at least one 0 in mat.
Solution
- BFS
- DP
Python
import sys
from collections import deque
class Solution:
def __init__(self):
self.dx = [1, -1, 0, 0]
self.dy = [0, 0, 1, -1]
def updateMatrix(self, matrix: List[List[int]]) -> List[List[int]]:
if not matrix or len(matrix) == 0 or len(matrix[0]) == 0:
return matrix
n, m = len(matrix), len(matrix[0])
dist = [[0 for _ in range(m)] for _ in range(n)]
queue = deque([])
for i in range(n):
for j in range(m):
if matrix[i][j] == 0:
dist[i][j] = 0
queue.append([i, j])
else:
dist[i][j] = sys.maxsize
while queue:
x, y = queue.popleft()
for d in range(4):
next_x, next_y = x + self.dx[d], y + self.dy[d]
if self.isValid(next_x, next_y, matrix):
if (dist[next_x][next_y] > dist[x][y] + 1):
dist[next_x][next_y] = dist[x][y] + 1
queue.append([next_x, next_y])
return dist
def isValid(self, x, y, matrix):
return 0 <= x < len(matrix) and 0 <= y < len(matrix[0])
Java
class Solution {
public int[][] updateMatrix(int[][] matrix) {
if (matrix.length == 0 || matrix[0].length == 0) {
return matrix;
}
int[][] dis = new int[matrix.length][matrix[0].length];
int range = matrix.length * matrix[0].length;
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[0].length; j++) {
if (matrix[i][j] == 0) {
dis[i][j] = 0;
} else {
int upCell = (i > 0) ? dis[i - 1][j] : range;
int leftCell = (j > 0) ? dis[i][j - 1] : range;
dis[i][j] = Math.min(upCell, leftCell) + 1;
}
}
}
for (int i = matrix.length - 1; i >= 0; i--) {
for (int j = matrix[0].length - 1; j >= 0; j--) {
if (matrix[i][j] == 0) {
dis[i][j] = 0;
} else {
int downCell = (i < matrix.length - 1) ? dis[i + 1][j] : range;
int rightCell = (j < matrix[0].length - 1) ? dis[i][j + 1] : range;
dis[i][j] = Math.min(Math.min(downCell, rightCell) + 1, dis[i][j]);
}
}
}
return dis;
}
}
Complexity Analysis
- Time Complexity
- O(NM)
- Space Complexity
- O(NM)