..
18. 4Sum
Problem Description
Given an array nums of n integers, return an array of all the unique quadruplets [nums[a], nums[b], nums[c], nums[d]] such that:
0 <= a, b, c, d < n
a, b, c, and d are distinct.
nums[a] + nums[b] + nums[c] + nums[d] == target
You may return the answer in any order.
Example 1:
Input: nums = [1,0,-1,0,-2,2], target = 0
Output: [[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
Example 2:
Input: nums = [2,2,2,2,2], target = 8
Output: [[2,2,2,2]]
Constraints:
1 <= nums.length <= 200
-10^9 <= nums[i] <= 10^9
-10^9 <= target <= 10^9
Solution
- DFS backtracking
- Two Pointers
Python
class Solution:
def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
self.res = []
nums.sort()
self.dfs(nums, target, 4, [])
return self.res
def dfs(self, nums, target, k, curr):
if k == 0 and target == 0:
self.res.append(curr[:])
return
if len(nums) == 0 or nums[0] * k > target or target > nums[-1] * k:
return
for i in range(len(nums)):
if i == 0 or nums[i - 1] != nums[i]:
curr.append(nums[i])
self.dfs(nums[i + 1:], target - nums[i], k - 1, curr)
curr.pop()
Java
class Solution {
public List<List<Integer>> fourSum(int[] nums, int target) {
List<List<Integer>> rst = new ArrayList<List<Integer>>();
Arrays.sort(nums);
for (int i = 0; i < nums.length - 3; i++) {
if (i != 0 && nums[i] == nums[i - 1]) {
continue;
}
for (int j = i + 1; j < nums.length - 2; j++) {
if (j != i + 1 && nums[j] == nums[j - 1])
continue;
int left = j + 1;
int right = nums.length - 1;
while (left < right) {
int sum = nums[i] + nums[j] + nums[left] + nums[right];
if (sum < target) {
left++;
} else if (sum > target) {
right--;
} else {
ArrayList<Integer> tmp = new ArrayList<Integer>();
tmp.add(nums[i]);
tmp.add(nums[j]);
tmp.add(nums[left]);
tmp.add(nums[right]);
rst.add(tmp);
left++;
right--;
while (left < right && nums[left] == nums[left - 1]) {
left++;
}
while (left < right && nums[right] == nums[right + 1]) {
right--;
}
}
}
}
}
return rst;
}
}
Complexity Analysis
- Time Complexity
- O(n^3) - sort and two sum
- Space Complexity
- O(4n)