..
108. Convert Sorted Array to Binary Search Tree
Problem Description
Given an integer array nums where the elements are sorted in ascending order, convert it to a height-balanced binary search tree.
A height-balanced binary tree is a binary tree in which the depth of the two subtrees of every node never differs by more than one.
Example 1:
Input: nums = [-10,-3,0,5,9]
Output: [0,-3,9,-10,null,5]
Explanation: [0,-10,5,null,-3,null,9] is also accepted:
Example 2:
Input: nums = [1,3]
Output: [3,1]
Explanation: [1,3] and [3,1] are both a height-balanced BSTs.
Constraints:
1 <= nums.length <= 10^4
-10^4 <= nums[i] <= 10^4
nums is sorted in a strictly increasing order.
Solution
Recursively build binary search tree
Python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def sortedArrayToBST(self, nums: List[int]) -> TreeNode:
if not nums or len(nums) == 0:
return None
if len(nums) == 1:
return TreeNode(nums[0])
n = len(nums)
root = TreeNode(nums[n // 2])
left = self.sortedArrayToBST(nums[: n// 2])
right = self.sortedArrayToBST(nums[n // 2 + 1:])
root.left = left
root.right = right
return root
Java
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
if (nums == null || nums.length == 0) {
return null;
}
if (nums.length == 1) {
return new TreeNode(nums[0]);
}
int n = nums.length;
TreeNode root = new TreeNode(nums[n / 2]);
TreeNode left = sortedArrayToBST(Arrays.copyOfRange(nums, 0, n / 2));
TreeNode right = sortedArrayToBST(Arrays.copyOfRange(nums, n / 2 + 1, nums.length));
root.left = left;
root.right = right;
return root;
}
}
Complexity Analysis
- Time Complexity
- O(n)
- Space Complexity
- O(n)
- this can be optimized by passing the startIndex and endIndex without passing the actual array
- O(n)