..
162. Find Peak Element
Problem Description
A peak element is an element that is strictly greater than its neighbors.
Given an integer array nums, find a peak element, and return its index. If the array contains multiple peaks, return the index to any of the peaks.
You may imagine that nums[-1] = nums[n] = -∞
.
You must write an algorithm that runs in O(log n) time.
Example 1:
Input: nums = [1,2,3,1]
Output: 2
Explanation: 3 is a peak element and your function should return the index number 2.
Example 2:
Input: nums = [1,2,1,3,5,6,4]
Output: 5
Explanation: Your function can return either index number 1 where the peak element is 2, or index number 5 where the peak element is 6.
Constraints:
1 <= nums.length <= 1000
-2^31 <= nums[i] <= 2^31 - 1
nums[i] != nums[i + 1] for all valid i.
Solution
Use Binary Search to search for the peak element
Python
class Solution:
def findPeakElement(self, nums: List[int]) -> int:
start, end = 0, len(nums) - 1
while (start + 1 < end):
mid = (start + end) // 2
# nums[mid] is one of peaks
if nums[mid] > nums[mid - 1] and nums[mid] > nums[mid + 1]:
return mid
# Ascending area
elif nums[mid] > nums[mid - 1] and nums[mid] < nums[mid + 1]:
start = mid
# Descending area
else:
end = mid
return start if nums[start] >= nums[end] else end
Java
class Solution {
public int findPeakElement(int[] nums) {
int start = 0, end = nums.length - 1;
int mid;
while (start + 1 < end) {
mid = (start + end) / 2;
if (nums[mid] > nums[mid + 1] && nums[mid] > nums[mid - 1]) {
return mid;
} else if (nums[mid - 1] < nums[mid] && nums[mid] < nums[mid + 1]) {
start = mid;
} else {
end = mid;
}
}
if (nums[start] >= nums[end]) {
return start;
} else {
return end;
}
}
}
Complexity Analysis
- Time Complexity
- O(logn)
- Space Complexity
- O(1)