..
384. Shuffle an Array
Problem Description
Given an integer array nums, design an algorithm to randomly shuffle the array. All permutations of the array should be equally likely as a result of the shuffling.
Implement the Solution class:
Solution(int[] nums)
Initializes the object with the integer array nums.int[] reset()
Resets the array to its original configuration and returns it.int[] shuffle()
Returns a random shuffling of the array.
Example 1:
Input
["Solution", "shuffle", "reset", "shuffle"]
[[[1, 2, 3]], [], [], []]
Output
[null, [3, 1, 2], [1, 2, 3], [1, 3, 2]]
Explanation
Solution solution = new Solution([1, 2, 3]);
solution.shuffle(); // Shuffle the array [1,2,3] and return its result.
// Any permutation of [1,2,3] must be equally likely to be returned.
// Example: return [3, 1, 2]
solution.reset(); // Resets the array back to its original configuration [1,2,3]. Return [1, 2, 3]
solution.shuffle(); // Returns the random shuffling of array [1,2,3]. Example: return [1, 3, 2]
Constraints:
1 <= nums.length <= 200
-106 <= nums[i] <= 106
All the elements of nums are unique.
At most 5 * 104 calls in total will be made to reset and shuffle.
Solution
Hoestly I dont see any points of this question, but here is some resources to check
This leetcode discussion explain the implementation of the Fisher-Yates Algorithm
Java
class Solution {
private int [] nums;
private Random random;
public Solution(int[] nums) {
this.nums = nums;
this.random = new Random();
}
/** Resets the array to its original configuration and return it. */
public int[] reset() {
return nums;
}
/** Returns a random shuffling of the array. */
public int[] shuffle() {
// keep generating random index, and keep swapping,
// since random idx->[0,i] so iterate arr from end so that randomindex lies where the index decision has not been taken
int [] copyarr = nums.clone();
for (int i = nums.length - 1; i > 0; i--) {
int ridx = random.nextInt(i + 1); // i+1 bcoz indexing is from 1-n and not 0-n-1
// swap elements at ridx and i
int temp = copyarr[i];
copyarr[i] = copyarr[ridx];
copyarr[ridx] = temp;
}
return copyarr;
}
}
/**
* Your Solution object will be instantiated and called as such:
* Solution obj = new Solution(nums);
* int[] param_1 = obj.reset();
* int[] param_2 = obj.shuffle();
*/
Python
import random
class Solution:
def __init__(self, nums: List[int]):
self.original = nums[:]
def reset(self) -> List[int]:
"""
Resets the array to its original configuration and return it.
"""
return self.original
def shuffle(self) -> List[int]:
"""
Returns a random shuffling of the array.
"""
nums = self.original[:]
random_nums = random.shuffle(nums)
return nums
# Your Solution object will be instantiated and called as such:
# obj = Solution(nums)
# param_1 = obj.reset()
# param_2 = obj.shuffle()
Complexity Analysis
- Time Complexity
- reset(): O(1)
- shuffle(): O(n)
- Space Complexity
- O(n)