..
927. Three Equal Parts
Problem Description
You are given an array arr which consists of only zeros and ones, divide the array into three non-empty parts such that all of these parts represent the same binary value.
If it is possible, return any [i, j] with i + 1 < j, such that:
arr[0], arr[1], ..., arr[i] is the first part,
arr[i + 1], arr[i + 2], ..., arr[j - 1] is the second part, and
arr[j], arr[j + 1], ..., arr[arr.length - 1] is the third part.
All three parts have equal binary values.
If it is not possible, return [-1, -1].
Note that the entire part is used when considering what binary value it represents. For example, [1,1,0] represents 6 in decimal, not 3. Also, leading zeros are allowed, so [0,1,1] and [1,1] represent the same value.
Example 1:
Input: arr = [1,0,1,0,1]
Output: [0,3]
Example 2:
Input: arr = [1,1,0,1,1]
Output: [-1,-1]
Example 3:
Input: arr = [1,1,0,0,1]
Output: [0,2]
Constraints:
3 <= arr.length <= 3 * 104
arr[i] is 0 or 1
Solution
This video explains well
Python
class Solution:
def threeEqualParts(self, arr: List[int]) -> List[int]:
total = sum(arr)
if total % 3 != 0:
return [-1, -1]
if total == 0:
return [0, len(arr) - 1]
ones = total // 3
i = len(arr) - 1
while i > 0 and ones > 0:
if arr[i] == 1:
ones -= 1
i -= 1
# arr[i+1:] is the number
digit = arr[i + 1:]
ret = []
start = 0
while start < len(arr) and arr[start] == 0:
start += 1
if not self.check(arr, start, digit):
return [-1, -1]
ret.append(start + len(digit) - 1)
start = start + len(digit)
while start < len(arr) and arr[start] == 0:
start += 1
if not self.check(arr, start, digit):
return [-1, -1]
ret.append(start + len(digit))
return ret
def check(self, arr, pointer, digit):
if arr[pointer: pointer + len(digit)] == digit:
return True
return False
Java
class Solution {
public int[] threeEqualParts(int[] arr) {
int sum = 0;
for (int i = 0; i < arr.length; i++) {
sum += arr[i];
}
if (sum % 3 != 0) {
return new int[]{-1, -1};
}
if (sum == 0) {
return new int[]{0, arr.length - 1};
}
int[] ret = new int[2];
int count = (int) sum / 3;
// count from end to start
int j = arr.length - 1;
while (j >= 0 && count > 0) {
if (arr[j] == 1) {
count--;
}
j--;
}
// j point to the first `1` in the third part
j++;
// check for the first part
int i = 0;
while (i < arr.length && arr[i] == 0) {
i++;
}
// i points to the first `1`
int pointer = j;
while (pointer < arr.length) {
if (arr[i] == arr[pointer]) {
i++;
pointer++;
} else {
break;
}
}
if (pointer != arr.length) {
return new int[]{-1, -1};
}
ret[0] = i - 1;
// check for the second part
while (i < arr.length && arr[i] == 0) {
i++;
}
pointer = j;
while (pointer < arr.length) {
if (arr[i] == arr[pointer]) {
i++;
pointer++;
} else {
break;
}
}
if (pointer != arr.length) {
return new int[]{-1, -1};
}
ret[1] = i;
return ret;
}
}
Both solutions can extract the “repeated” part to helper functions, I am just lazy
Complexity Analysis
- Time Complexity
- O(n)
- Space Complexity
- O(1)